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We claim that both multipartiteness and localization of subsystems of compound quan-
tum systems are of an essentially relative nature crucially depending on the set of
operationalistically available states. In a more general setting, to capture the relativity
and variability of our structures with respect to the observation means, sheaves of al-
gebras may need be introduced. We provide the general formalism based on algebras
which exhibits the relativity of multipartiteness and localization.

1. PROLEGOMENA CUM PHYSICAL MOTIVATION

The non-local behavior of quantum systems is virtually undisputed. There
is ample experimental evidence suggesting that there exist quantum states of an
essentially non-local nature, an issue which is verified by the statistics of observa-
tions. Entanglement is a crucial resource for quantum information processing and
quantum communication. As it turns out, while it may be easy to produce non-
entangled states, it is difficult to fabricate and maintain entangled ones. Recently,
multipartite entanglement has been classified by the use of partitions of the set of
subsystems (Dür and Cirac, 2000).

We may regard this as the first indication of the idea we wish to explore
later, namely, the relativity of the ‘property’ for a subsystem to be observed—in
effect, to be localized—somewhere. Albeit, it is perhaps inadequate to just say
relativity; one should also say uncertainty of some sort, as the position itself is
created at the very moment of the preparation of the state. Quanta act not only
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non-locally, but also ‘a-locally’ (Finkelstein, 1996; Raptis and Zapatrin, 2000), as
if there is no given external physical space, fixed up-front as it were, to restrain
their ‘quantum leaps of coherence and entanglement’. Even more iconoclastically,
space(time) is intuited to be ‘inherent’ in quanta, as it were, created by them
(Raptis and Zapatrin, 2001). On the whole, it is more physical to maintain that
space(time) and its mathematical analysis (topology and geometry) is a result of
the algebraically represented (dynamical) relations between quanta rather than
being fixed up-front, once and forever, by the theorist. We may distill all this to
the following motto:

First comes the quantum, then space; not the other way around.

1.1. Organization of the Paper

The paper is organized as follows. We begin with an overview of how mul-
tipartiteness arises in classical mechanics, what are the ways to recover it oper-
ationally, and to what extent it is ‘absolute’. We point out that in the case of the
lack of availability of all states, it may turn out that even classical systems may
exhibit the ‘virtual’ character of their multipartite structure. This is just an obser-
vation from classical statistics. Then we provide the necessary basic definitions
and recall how multipartiteness is described in standard quantum mechanics. We
observe that the relativity of localization and entanglement already exists in the
usual quantum mechanics, so that there is no need to add to or to remove from the
standard theory essentially anything.

We then translate both classical and quantum multipartite issues into a uni-
form algebraic language. This enables us to introduce the notion of multipartite
structures (MPS) on algebras in a way that crucially depends on the set of available
states. Then we show how the structure of loci of subsystems—which we claim
to be the very structure of space(time)—emerges rather naturally. At the end,
we entertain the possibility that observation–relativization and, concomitantly,
locus-variability may be mathematically modeled by (finitary) sheaves of (Rota,
in known cases (Raptis and Zapatrin, 2000)) algebras over those loci-structures
(spectral topologies) inherent in quantum subsystems much in the same way that
has been accomplished for quantum spacetime foam (Raptis and Zapatrin, 2001)
and gravity (Mallios and Raptis, 2001).

2. CLASSICAL COMPOUNDNESS

In this section we describe two ways in which the compoundness of classical
systems may be treated as relative. We commence the study of compoundness start-
ing from classical systems. We show that even at the classical level there are essen-
tially two different manifestations of the relativity of the notion of multipartiteness.
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The first manifestation is due to coarse-graining (grouping subsystems), while the
second is related to different decompositions of the available configuration space,
decompositions which depend on the scope of sets an experimenter possesses at
her disposal (i.e., available or ‘experimentally accessible’ states). In this way, we
introduce the twofold relativity of the notion of compoundness: compoundness
based on coarse-graining, and compoundness based on the choice of available
states, which we treat as being uncorrelated.

2.1. Cartesian Product Structures

How can we actually verify that a (classical) system is indeed multipartite?
Let us consider a simple model. On the one hand, we have a classical system
whose configuration space S consists of nine points, while on the other, two
classical systems each having a three-point configuration space, say M1 and M2.
The ‘first level’ mathematical description of them is identical: the configuration
space consists of nine points, be it S or M1 × M2. We are not able yet to tell
whether the first system is ‘here’ and the second one is ‘there’ solely in terms of
their configuration space description. A Cartesian product structure (CPS) must
be imposed in order to draw such distinctions.

How can one impose a CPS on a set? A way to put it is by hand. In our
example, this looks like making a rectangle from a line—see Fig. 1.

Fig. 1. An illustration of how CPS is imposed.

2.2. Coarse-Graining

How many CPSs can one introduce on a given finite set of cardinality
n? An immediate answer is the following: each possible CPS is associated
with a particular factorization n = n1n2 · · · nk , where k indicates the number
of subsystems associated with this particular CPS. Then, up to permutations of
the factors, all CPSs are in 1–1 correspondence with the factorizations of the
number n.

Given a certain factorization n = n1n2 · · · nk , we can consider groups of
factors as factors. In other words, we may not ‘exhaust’ the factorization, as it
were, carry it to its ‘finest’ or ‘irreducible’ level—i.e., to ns prime factors. Thus,
instead of an ‘ultra-fine’ description of subsystems, we consider coarser ones. This
is the well-known notion of coarse-graining (Sorkin, 1991; Zapatrin, 1993)
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However, this approach is too rigid; in particular, it entails that configuration
spaces with a prime number of points have no CPSs at all, and obviously the same
holds in the quantum case, see Section 3.

2.3. Compound Systems with Constraints

Our first step towards a realistic description of multipartiteness is to take
into consideration that the states and the observables of a physical system may
have different ‘accessibility status.’ In particular, some of them may turn out
to be unavailable in our experimental setting. When we have a configuration
space equipped with CPS, the states—which are probability distributions—may
be product or not.

Now, instead of declaring up-front a CPS on a set, let us try to go the other way
around and consider the case when two classical parties are far away from each
other so that it takes considerable effort to make their states correlated. That means,
we distinguish between states which are ‘easy’ for us to prepare and those which
are not. The formulation of the inverse problem beckons: given a configuration
space S and a collection of states, how can one recover a CPS S = M1 × M2 such
that the available states are product or weakly correlated ones?

This is a purely statistical problem which can be solved by using principal
component analysis. The idea is that the distributions are viewed as points in a
multi-dimensional space and then an eigenvalue problem is solved, so that the
number of resulting vectors with sufficiently large eigenvalues gives the number
of principal factors, which in our case may be viewed as the number of subsys-
tems. What is swept out by cutting ‘sufficiently small’ eigenvalues are correlated
states which, according to our setting of the problem, are rare and pragmatically
inaccessible.

Suppose that we have a ‘really’ bipartite classical system, but one which
also has constraints. This means that there are states in the Cartesian product
configuration space which are not accessible for us. Therefore, the ‘effective
configuration space’ will no longer carry a CPS; rather, it will be its proper subset.

Our claim is the following. CPSs can be introduced irrespectively of the extent
to which we can decompose the number of points of the available configuration
space. The only relevant issue is the analysis of correlations. Therefore, from now
on we change the spelling of ‘C’ in CPS from ‘Cartesian’ to ‘classical’ and CPSs
become CPSS.

2.4. Constrained Systems Viewed Algebraically

Now, let us base our considerations on an algebraic ground. Suppose we have
a bipartite system, and we measure local observables A1 and A2. If the state ρ in
which we measure them is a product one, the mean value of the product equals
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the product of the values:

ρ(A1 · A2) = ρ(A1) · ρ(A2) (1)

This may be regarded as a characteristic property. If we have two algebras a1

and a2 of local observables, then for any product state and any A1 ∈ a1, A2 ∈ a2,
condition (1) holds.

Our idea is to forget for the time being about the CPS on the configuration
space and start from a given set P of states which we declare to be product.
Then we may take two subalgebras a1 and a2, and ask whether for any ρ ∈ P (1)
holds. If the answer is yes, then operationally, from the point of view of available
observations, we are dealing with a bipartite system. Note that this approach is
perfectly applicable to systems with constraints; when the effective configuration
space has no product structure, the multiplicativity (1) still holds!

Note that when we have a CPS on a set, we can consider local algebras of
observables. In turn, each local algebra has its set of points. What is the relation
between the global algebra of observables and local ones, between the overall
configuration space and the configuration spaces of the individual systems? The
answer is known. The global algebra is (in general, a superset of) the tensor product
of local algebras, and the overall configuration space is (in general, a superset of)
the Cartesian product of individual configuration spaces.

This gives us a clue to introduce multipartiteness in an algebraic fashion.
Namely, take a collection of subalgebras of the overall algebra of observables. For
any state ρ we may ask if the analog of (1) holds. Note that this is not an attempt
to treat states as points, which is meaningless, since for two local observables (1)
does not hold in general. That is why we introduce the term loci instead of points.

2.5. Classical Product Structures

In classical mechanics, the algebra of observables is a (commutative) algebra
of smooth functions defined on the configuration space. Due to Gel’fand duality
we may generalize the ideas of Section 2 and introduce CPS in a purely algebraic
way, that is, with no a priori reference to the underlying geometrical configuration
space (manifold), which only later will be recovered by the representation theory
of the algebras employed much in the same way we did for spacetime foam in
(Raptis and Zapatrin, 2001). A CPS B is a set of unital subalgebras.

B = {a1, . . . , an}
The algebras ai forming this set are said to be ALGEBRAS OF LOCAL OBSERV-

ABLES. The labels which mark each subalgebra is called LOCUS. This definition
looks at first sight counterintuitive as it apparently disagrees with the standard
viewpoint: (i) We do not require the local subalgebras to intersect only at the unit
element of the embracing algebra and the reason for this is because they may be
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indistinguishable from the unit element when we have a limited number of states
at our disposal. (ii) We do not require the local subalgebras to comprise the whole
algebra of observables, this too reflecting our ‘local experimental ignorance’ con-
cerning the totality of properties of the quantum system that can in principle be
observed.

2.6. State-CPS Duality

Given an algebra, a CPS B = {a1, . . . , an} and a state ρ on it, we say that ρ

is PRODUCT WITH RESPECT TO B whenever the generalization of the condition (1)
holds:

∀i ∀Ai ∈ ai ρ

(∏
i

Ai

)
=

∏
i

ρ (Ai) (2)

Therefore, we may encounter the following situation. Suppose we have a set of
states, which we may regard as being ‘easily available’. Then, it may happen that
there are several inequivalent CPSs with respect to which these states are product.

Our claim is the following. Even in the classical case, in a situation where we
have a restricted set of states at our disposal, all product structures can be treated
as full-fledged multipartite(ness) as we have no operational means to single out,
‘prefer’, or discriminate between particular states. Now we may approach the basic
claims of our paper. Even in a classical situation the following hold. What creates
observable multipartiteness? The set of available states. Where is the multipartite
structure genuinely imposed? On the algebra of observables.

3. COMPOUNDNESS IN QUANTUM MECHANICS

In this section, we show that all the issues concerning the relativity of classical
multipartiteness are still effective in the quantum case. Furthermore, the variety of
quantum multipartite structures acquires a new, continuous degree of freedom. The
main difference between the classical and the quantum case is that the condition
for a state to be product is replaced by separability.

3.1. The Relativity of Multipartite Entanglement

Begin with basic definitions. Given a state of a composite N -partite system
S, denote its density matrix by ρ. A density matrix ρ is called PRODUCT if it can
be represented as a tensor product of density matrices of subsystems ρ = ρ1 ⊗
· · · ⊗ ρN . A state ρ is SEPARABLE if its density matrix is a convex or ‘incoherent’
(ie, a classical probabilistic) linear combination of product ones.

ρ =
∑

pαρα
1 ⊗ · · · ⊗ ρα

N (3)
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with pα > 0 and
∑

pα = 1.

The states which are not separable are called ENTANGLED.
The first hint we wish to give towards introducing our algebraic picture of

compoundness is based on the following rationale: when we have several parties
in an entangled state we must consider them as a single party—an inseparable
entity. At the same time, what right have we got to still call this ‘coherent whole’,
‘several entangled parties’? Presumably, because in principle we also have at our
disposal other states, which are separable and, a fortiori, which can separate or
individuate the constituent parties.

3.2. Coarse-Graining

To introduce the quantum version of coarse-graining in CPS we proceed in
close analogy with the classical case, the only, albeit essential, difference being
that the aforementioned separability condition should also be taken into account.

So, let us weaken the condition for states of a composite system S to be
product and separable. Namely, instead of requiring it to be product with respect
to H = H1 ⊗ · · · ⊗ HN , we make this condition relative to a partition � of the
set A of subsystems of S, that is, with respect to a particular decomposition of
the set of subsystems. In a sense, we are allowed to relax in this way the product
and separable states of a composite system, because, as explained earlier, they are
precisely the ‘least quantum’ ones (i.e., non-entangled).

Given a partition � = {σ1, . . . , σM} of A and a density matrix ρ in the state
space of S, ρ is called �-PRODUCT whenever it can be represented as a tensor
product ρ = ρσ1 ⊗ · · · ⊗ ρσM

and �-SEPARABLE if it is a convex combination of
�-product states:

ρ =
∑

pαρα
σ1

⊗ · · · ⊗ ρα
σN

(4)

In other words, (4) means that we can prepare ρ as an ensemble of mixed states
located at sites σ1, . . . , σM .

Given a state ρ, we may now ask for each partition � of the set A of
subsystems of S whether ρ is �-separable or not. As a result, we obtain the set
�(ρ) of partitions of A with respect to which ρ is separable (4):

� ∈ �(ρ) ⇔ ρ is �-separable (5)

The set of all partitions of a given set has a natural ordering ‘�’, which represents
acts of coarse-graining those partitions. In order to specify all partitions with
respect to which a given state ρ is separable, we only have to find maximal ones
with respect to ‘�’. This may serve a base for geometrico-algebraic invariants for
multipartite entanglement, for details of which the reader may refer to (Zapatrin,
in press).
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3.3. Tensor Product Structures (TPSs)

In Section 2 we introduced the variety of CPS for classical systems. This
admits an immediate generalization to quantum systems which was carried out
by Svozil (2002) and Zanardi (2001). Let us briefly review it. First, following
Svozil (2002), take an arbitrary basis in a Hilbert space H of dimension n with
no a priori given TPS. Take any factorization n = n1 · · · nk and associate with
it k partitions of the set of basis vectors. The partitions must be such that each
basis vector could be represented as an intersection of appropriate elements of
each partition. In other words, these partitions should form independent Boolean
algebras. Then, taking an element of a partition, we may view it as a qubit (in
generalized sense with an arbitrary number of values). To get the next degree of
freedom in producing different TPSs, apply according to Zanardi (2001) a global
unitary transformation U : H → H, which will yield us isomorphic, but different
(with respect to, say, observables), qubit structures. In the sequel, the subsystems
of the associated multi-party decomposition will be referred to as virtual.

So, by now we have completed the description of both classical and quantum
multipartite systems. What we have done was essentially to show how given a
compound system we can describe it in different ways and in some sense ‘modify’
its compoundness. The main goal of our paper is, however, to provide the appro-
priate algebraic machinery for creating compoundness. We address this issue in
the next section.

4. COMPOUNDNESS FROM AN ALGEBRAIC PERSPECTIVE

As it has been pointed out earlier, both classical and quantum compound
systems exhibit some kind of relativity of their multipartite structure. In this
section we take a step further and turn the construction the other way around.
Starting from a given set of observables and states—in fact, this is perhaps the
only way that our approach may qualify as being operationalistic proper—we
create rather than (re)construct (and this is our main claim here!) the full-fledged
multipartite structure of compound quantum systems. It is full fledged, because no
experiment can be devised to discriminate between our ‘fake’ multipartiteness and
the purported ‘real’ one. As a matter of fact, we abide to the stronger statement
that there is simply no ‘real’ multipartiteness at all.

We shall describe both classical and quantum systems by using algebraic
means. That is, we shall regard ‘algebras of observables’ as primary theoretical
objects. As a result, the geometrical configuration and state spaces will turn out to
be just representation spaces for those algebras. This is in line with a generalized
notion of Gel’fand duality (Raptis and Zapatrin, 2001). Note that the term ‘algebra
of observables’ is rather broadly and heuristically used here, as only its self-adjoint
elements correspond to observables proper. The algebra itself is broader as it
embodies both observables and evolutions. Recall the basic definitions.
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Now we are going to provide a quantum, noncommutative analog of the
classical product structures. The language of algebras is so adequate for it that we
do not have to introduce practically anything new. The main difference between
the classical and the quantum case is that the variety of MPS in the latter becomes
much broader and richer than in its classical counterpart.

4.1. Virtual Multipartite Structures

A collection B

B = {ai}i∈Loc(B) (6)

of unital subalgebras of A which are closed with respect to taking double commu-
tant ∀i (ai)cc = ai is called VIRTUAL MULTIPARTITE STRUCTURE (MPS).

There is a partial order on MPS which enables us to represent the possibility
of coarse-graining in both classical and quantum MPSs. It is introduced by analogy
with that on partitions. Namely, we say that an MPSs B = {ai}i∈Loc(B) is COARSER

than B
′ = {ai}i∈Loc(B) (denote it by B � B

′) if we can partition B
′ so that the

span of each element of the partition is a subalgebra of appropriate ai from B.
Furthermore, this is a lattice ordering. In fact, if we have a set of MPSs

B
1, . . . ,Br we may take all possible intersections of all subalgebras from all

MPSs. The result will be again an MPS which will be the least upper bound of
B

1, . . . ,Br with respect to the relation “�”

B
1 ∨ · · · ∨ B

r =
r⋂

i=1

⋂
ki∈Loc(B

i
)

{
ai

ki

}

The lattice structure can then be used to recover the loci.

4.2. The State-MPS Duality

We emphasize that we did not require the elements of different ‘local’ sub-
algebras to commute. This, for instance, is in striking contrast to the usual (in-
volutive) observable algebras of (relativistic) quantum matter systems which are
already localized in Minkowski space, as the geometry of the fixed background
spacetime dictates the ‘commutativity vis-à-vis local causality’ properties of the
corresponding algebras (Einstein Locality). Here, exactly because we do not posit
up-front an ambient base localization space(time), we are not a priori constrained
by Einstein Locality and, as a result, quantum non-locality effects do not surprise
us. This is the crucial point of our approach—we shall require commutativity only
on certain states which we treat as being ‘available.’ Operationally, that means
that the values of all ‘local’ variables should be independent random (stochastic)
variables, but under the proviso that the system is in an available state only. We
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thus define the relation S of separability between a state ρ and an MPS B as
follows

ρ S B ⇔ ∀ai ∈ ai ∀aj ∈ aj ρ(ai · aj ) = ρ(ai) · ρ(aj ) (7)

Note that the right-hand-side of (7) is well defined as both ai , aj belong to the
total algebra A. The analog of local observables in standard tensor structures are
the operators of the form 1 ⊗ · · · ⊗ Ai ⊗ · · · ⊗ 1. Then, by analogy with (5) we
introduce the duality using the same notation �(ρ) for the appropriate set of MPSs:

B ∈ �(ρ) ⇔ ρ is B -separable (8)

4.3. Recovering the Loci

As claimed earlier, we start with an algebra A of observables and the set S

of available states. With any state ρ ∈ S we can associate the set �(ρ) of MPSs
with respect to which ρ is separable.

The loci of any of MPS from �(ρ) are still thought of as groups of elementary
subsets. Now, using the lattice structure on the set of all MPSs, we can form the
supremum

BS =
∨
ρ∈S

∨
B∈�(ρ)

B (9)

which is still an MPS. This is exactly what provides us with ‘points’—namely,
the loci Loc(Bavlst) are treated as ultimately indivisible with respect to the
given set of accessible states, which, in turn, one may identify with the available
(microscopic) energies.

How and why does relativity come about? When we broaden the range of
available states (as it were, increase the energy of microscopic resolution) the
number of terms in (9) may only increase, therefore the MPSs BS may become
finer. This, in turn, means that its loci ‘decay’ or break down to ‘smaller’ ones.
The benefit we get from this construction from the point of view of quantum
computing is that when the loci are defined (created) we can then directly apply
Svozil’s (2002) partition scheme in order to reconstruct qubits. These are full-
fledged qubits viewed purely operationally.

We conclude the paper by noting briefly that in the already worked out case
where the ‘compound’ system is quantum spacetime, the aforesaid algebras have
been seen to be (non-involutive) Rota algebras, while the set of loci was en-
dowed with a so-called spectral Rota topology by employing a variant of the idea
of Gel’fand duality coined Gel’fand spatialization (Raptis and Zapatrin, 2000,
2001). This theoretical scenario is supposed to represent a combinatory-algebraic
description of (the kinematics of) spacetime foam—the conception of the space-
time microtopology as being a quantum observable (Raptis and Zapatrin, 2001).
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At the same time, it has been intuited that, by further regarding these algebras as
noncommutative local rings, their sheaf-theoretic localizations over their Gel’fand
spectra can capture, by entirely algebraico-categorical means, notions of relativity
and dynamical variability of quantum discretized spacetime (Mallios and Raptis,
2001).

Thus, similarly, here we intuit that the structure of loci may be endowed with
a suitable spectral topology and, concomitantly, their relativity and dynamical
variability can be captured by considering sheaves of the relevant associative
algebras over these topological spaces. Such raw analogies may provide the fertile
ground for future investigations in which ideas from quantum computation proper
can be brought closer to ones from quantum spacetime and gravity.
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